If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+4x+10=0
a = -3; b = 4; c = +10;
Δ = b2-4ac
Δ = 42-4·(-3)·10
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{34}}{2*-3}=\frac{-4-2\sqrt{34}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{34}}{2*-3}=\frac{-4+2\sqrt{34}}{-6} $
| -11x+16x=85 | | 5+2(4n-3)=19 | | 5x-3+2x=x+7+x | | -24=4(5x+19) | | 4n+17=2n+31 | | (6x−7)+(x+13)=90 | | -4+3x-1=2x=1+2x | | -x+1/4x+7/16x=-131/2 | | −6(3a+4)=3a−3 | | -(14x-8)+(9x+4)=-13 | | 7x+31=34 | | z=2(-2)+3 | | (v+3.7)=(1.3) | | x+2/3-1=17 | | 2x-1-1=x=3=(-5+x) | | 4-2(x-5=x-19 | | 1+15b=310b | | 2(m−5)=18 | | -d+7.56=2.56 | | (6x−7)=(x+13) | | 6(b-94)=-36 | | (7x-5)=(5x+27) | | -10.48=v/8+10 | | -1.5-y=-7.7 | | 3/17=u/11 | | 6a+4=78 | | (x+12)=(2x+8) | | 4x-5=-5=4x | | 34y=23 | | x=(3x-12) | | 45x=-4 | | 16+7v=9v |